Isothermal Vapor–Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water

Kiyofumi Kurihara,[†] Tsuyoshi Minoura,[‡] Kouichi Takeda,[†] and Kazuo Kojima^{*,†}

Department of Industrial Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan, and Mitui Engineering & Shipbuilding Company, Ltd., Tokyo, Japan

Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

Introduction

This paper discusses the vapor-liquid equilibria (VLE) that were measured for the ternary system of methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. For the ternary system, we previously reported the isobaric VLE at 101.3 kPa (Kurihara et al., 1993), and two data sets of isothermal VLE (298.15, 313.15 K) are available in the literature (Hall et al., 1979; Ratcliff and Chao, 1969).

Experimental Section

Apparatus and Procedure. A modified Rogalski-Malanoski equilibrium still (Hiaki et al., 1992) combined with an isothermal VLE measuring apparatus, which was similar to that described in the literature (Hiaki et al., 1994), was used. The apparatus consisted of an equilib-

Figure 1. Pressure-composition diagram for methanol (1) + water (2): (**D**) x_1 and (**D**) y_1 at 323.15 K; (**A**) x_1 and (**A**) y_1 at 328.15 K; (**A**) x_1 and (**A**) y_1 at 328.15 K; (**A**) NRTL equation.

[†] Nihon University.

[‡] Mitui Engineering & Shipbuilding Company, Ltd.

Figure 2. Pressure-composition diagram for ethanol (1) + water (2): (\blacksquare) x_1 and (\square) y_1 at 323.15 K; (\blacktriangle) x_1 and (\triangle) y_1 at 328.15 K; (\bigcirc) x_1 and (\bigcirc) y_1 at 333.15 K; (\frown) NRTL equation.

Table 1. Densities, ρ , and Normal Boiling Points, $T_{\rm b}$, of the Components

	ρ(298 (g c	8.15 K)/ cm ⁻³)	$T_{ m b}/{ m K}$		
component	exptl	lit.ª	exptl	lit.ª	
methanol ethanol water	0.7867 0.7851 0.9972	0.786 37 0.784 93 0.997 05	337.69 351.48 373.15	$337.696 \\ 351.443 \\ 373.15$	

^a Riddick et al., 1986.

rium still for samples, an ebulliometer for a reference substance (water), a Hewlett-Packard Model 3421A acquisition data/control unit, an NEC personal computer, six solenoid valves, three pressure transducers, three surge tanks, cold traps, a refrigerator, and a vacuum pump. An attractive feature of this apparatus is that the temperature in the system can be kept constant accurately using a computer in conjunction with the six solenoid valves and three pressure transducers.

The equilibrium temperature was measured with a calibrated platinum resistance thermometer with an ac-

0 © 1995 American Chemical Society

Table 2. Isothermal Vapor–Liquid Equilibrium Data, Vapor Pressure, P, Liquid Phase, x_1 , and Vapor Phase, y_1 , Mole Fractions, and Activity Coefficients, γ_i , for Methanol (1) + Water (2)

P/kPa	x_1	<i>y</i> 1	γ1	<i>γ</i> 2	P/kPa	x_1	\mathcal{Y}_1	γ1	<i>7</i> 2	P/ k Pa	x_1	y_1	γ1	γ2
323.15 K														
29.119	0.2470	0.6710	1.4425	1.0270	36.276	0.4316	0.7873	1.2022	1.0956	42.049	0.6145	0.8569	1.0623	1.2599
30.620	0.2842	0.7029	1.3799	1.0259	38.085	0.4872	0.8100	1.1494	1.1389	44.916	0.6989	0.8890	1.0336	1.3367
31.135	0.2940	0.7109	1.3714	1.0291	39.341	0.5314	0.8254	1.1085	1.1831	45.943	0.7290	0.8991	1.0246	1.3810
32.790	0.3338	0.7373	1.3182	1.0436	40.160	0.5513	0.8326	1.0998	1.2092	47.334	0.7730	0.9160	1.0135	1.4143
35.321	0.4028	0.7772	1.2388	1.0636	40.612	0.5688	0.8410	1.0886	1.2087					
							328.15 K							
30.710	0.1587	0.5660	1.6198	1.0022	44.237	0.4137	0.7693	1.2089	1.1005	52.227	0.6091	0.8502	1.0675	1.2654
33.368	0.1980	0.6154	1.5318	1.0121	45.184	0.4346	0.7799	1.1911	1.1120	52.664	0.6217	0.8557	1.0612	1.2701
39.038	0.2961	0.7019	1.3632	1.0453	46.743	0.4753	0.7947	1.1472	1.1562	54.245	0.6600	0.8709	1.0472	1.3024
40.215	0.3171	0.7182	1.3410	1.0492	48.181	0.5078	0.8079	1.1245	1.1888	54.956	0.6781	0.8770	1.0395	1.3278
40.835	0.3339	0.7280	1.3104	1.0543	50.500	0.5669	0.8315	1.0855	1.2421	55.980	0.7032	0.8866	1.0318	1.3525
42.143	0.3610	0.7432	1.2762	1.0708	51.100	0.5897	0.8401	1.0665	1.2590	59.208	0.7808	0.9183	1.0165	1.3958
42.760	0.3733	0.7504	1.2640	1.0767	51.974	0.6030	0.8495	1.0723	1.2457					
							333.15 K							
39.223	0.1686	0.5714	1.6014	1.0105	50.428	0.3303	0.7101	1.2998	1.0901	63.998	0.6044	0.8383	1.0583	1.3062
40.344	0.1814	0.5867	1.5712	1.0178	52.784	0.3681	0.7345	1.2616	1.1074	67.924	0.6804	0.8733	1.0378	1.3449
40.646	0.1910	0.5914	1.5152	1.0258	56.652	0.4461	0.7742	1.1757	1.1532	68.141	0.6835	0.8751	1.0384	1.3430
42.984	0.2167	0.6268	1.4953	1.0232	58.427	0.4775	0.7877	1.1518	1.1853	70.229	0.7255	0.8922	1.0271	1.3776
47.023	0.2773	0.6751	1.3745	1.0559	60.614	0.5282	0.8085	1.1077	1.2284	71.597	0.7530	0.9039	1.0215	1.3916
48.852	0.303 9	0.6943	1.3390	1.0714	62.260	0.5572	0.8216	1.0953	1.2525	72.832	0.7776	0.9141	1.0171	1.4055

Table 3. Isothermal Vapor-Liquid Equilibrium Data, Vapor Pressure, P, Liquid Phase, x_1 , and Vapor Phase, y_1 , Mole fractions, and Activity Coefficients, γ_i , for Ethanol (1) + Water (2)

P/kPa	x_1	y_1	71	γ_2	P/kPa	x_1	y 1	γ1	γ2	P/kPa	x_1	<i>y</i> 1	γ1	γ2
		_		-	•		323.15 K							
20.333	0.0874	0.4341	3.4513	1.0187	27.284	0.4691	0.6563	1.2973	1.4273	29.487	0.8454	0.8555	1.0119	2.2319
20.904	0.0967	0.4549	3.3591	1.0192	27.535	0.4987	0.6660	1.2495	1.4825	29.480	0.8559	0.8639	1.0090	2.2551
22.796	0.1411	0.5120	2.8214	1.0463	27.701	0.5218	0.6741	1.2158	1.5257	29.478	0.8638	0.8699	1.0067	2.2808
23.663	0.1756	0.5372	2.4675	1.0731	27.881	0.5421	0.6840	1.1950	1.5551	29.498	0.8713	0.8769	1.0067	2.2856
24.336	0.2065	0.5562	2.2331	1.0995	28.101	0.5692	0.6971	1.1688	1.5971	29.517	0.8801	0.8849	1.0063	2.2957
24.570	0.2253	0.5636	2.0935	1.1181	28.216	0.5907	0.7050	1.1436	1.6439	29.538	0.8911	0.8948	1.0057	2.3121
25.024	0.2552	0.5761	1.9235	1.1505	28.448	0.6242	0.7205	1.1148	1.7106	29.531	0.9031	0.9065	1.0051	2.3094
25.436	0.2856	0.5890	1.7856	1.1822	28.711	0.6697	0.7434	1.0817	1.8037	29.560	0.9136	0.9151	1.0039	2.3544
25.815	0.3133	0.6008	1.6845	1.2124	28.828	0.6868	0.7523	1.0716	1.8439	29.566	0.9263	0.9273	1.0035	2.3644
26.259	0.3535	0.6133	1.5497	1.2689	29.195	0.7586	0.7940	1.0366	2.0159	29.558	0.9344	0.9337	1.0014	2.4221
26.481	0.3773	0.6226	1.4861	1.2967	29.253	0.7811	0.8081	1.0266	2.0754	29.558	0.9480	0.9470	1.0011	2.4432
26.694	0.3999	0.6311	1.4325	1.3258	29.406	0.8299	0.8429	1.0129	2.1990	29.548	0.9528	0.9512	1.0001	2.4777
26.898	0.4258	0.6397	1.3738	1.3637										
							328.15 K							
27.774	0.1161	0.4841	3.1244	1.0261	35.215	0.5273	0.6801	1.2188	1.5091	37.325	0.8436	0.8554	1.0136	2.1901
29.017	0.1445	0.5123	2.7731	1.0470	35.507	0.5541	0.6845	1.1768	1.5908	37.352	0.8502	0.8595	1.0112	2.2235
31.391	0.2338	0.5712	2.0638	1.1119	35.516	0.5626	0.6874	1.1642	1.6073	37.378	0.8616	0.8688	1.0093	2.2493
31.767	0.2506	0.5760	1.9644	1.1375	36.055	0.6194	0.7138	1.1142	1.7173	37,393	0.8714	0.8775	1.0083	2.2614
32.475	0.2938	0.5923	1.7605	1.1866	36.530	0.6841	0.7480	1.0706	1.8465	37.395	0.8798	0.8848	1.0070	2.2757
33.048	0.3306	0.6058	1.6278	1.2318	36.779	0.7174	0.7667	1.0533	1.9244	37.416	0.8854	0.8891	1.0061	2.2992
33.350	0.3551	0.6106	1.5411	1.2745	36.812	0.7276	0.7714	1.0458	1.9581	37.415	0.8925	0.8946	1.0042	2.3297
33.611	0.3777	0.6191	1.4803	1.3022	36.973	0.7558	0.7937	1.0402	1.9804	37.421	0.9002	0.9019	1.0039	2.3363
34.012	0.4123	0.6294	1.3946	1.3576	37.172	0.7979	0.8211	1.0246	2.0872	37.425	0.9131	0.9130	1.0020	2.3803
34.343	0.4470	0.6465	1.3338	1.3898	37.223	0.8165	0.8340	1.0184	2.1363	37.437	0.9342	0.9331	1.0012	2.4189
34.519	0.4598	0.6557	1.3216	1.3929	37.307	0.8334	0.8470	1.0154	2.1741	37.412	0.9566	0.9550	1.0000	2.4662
35.017	0.5127	0.6682	1.2249	1.5096										
							993 15 K							
31 647	0 0742	0 4130	3 7957	1 0037	43 756	0 4808	0.6682	1 3001	1 3988	46 998	0.8538	0.8616	1.0113	2 2317
34 540	0 1071	0.4742	3 2893	1 0172	44 336	0.5298	0.6788	1.0001 1.2140	1.5151	46 987	0.8646	0.8715	1 0099	2 2372
36.840	0 1511	0.5196	2 7208	1 0425	44 447	0.5390	0.6887	1 2136	1 5017	47 020	0.8823	0.8860	1.0067	2 2855
37 611	0 1705	0.5326	2 5221	1 0597	44 935	0.5800	0 7070	1 1700	1 5687	47 045	0.8873	0.8908	1 0070	2 2878
38.387	0.1899	0.5473	2.3738	1.0726	45.282	0.6141	0.7175	1.1299	1.6590	47.048	0.8966	0.8987	1.0054	2.3137
38,999	0.2133	0.5587	2,1909	1.0939	45.557	0.6417	0.7333	1.1115	1.6975	47.060	0.9091	0.9095	1.0037	2.3524
40.175	0.2606	0.5814	1.9209	1.1373	45.881	0.6764	0.7468	1.0813	1.7974	47.055	0.9154	0.9151	1.0029	2.3712
41.230	0.3168	0.6006	1.6741	1.2052	46.218	0.7156	0.7674	1.0577	1.8931	47.055	0.9206	0.9195	1.0020	2.3957
42.157	0.3813	0.6209	1.4693	1.2918	46.338	0.7347	0.7834	1.0542	1.8951	47.044	0.9255	0.9242	1.0015	2.4039
42.635	0.4036	0.6316	1.4276	1.3170	46.547	0.7656	0.7968	1.0335	2.0218	47.026	0.9458	0.9444	1.0010	2.4238
43.368	0.4548	0.6502	1.3260	1.3917	46.868	0.8246	0.8395	1.0176	2.1504	47.039	0.9479	0.9467	1.0015	2.4180
43.730	0.4794	0.6688	1.3043	1.3917	46.915	0.8353	0.8477	1.0153	2.1756	46.994	0.9583	0.9562	0.9997	2.4807
		-	-		-	-			-	-	-	_		

curacy of ± 0.01 K. The pressure in the still was determined by measuring the bubble point of water and referring to the vapor pressure data on water (Bridgeman and Aldrich, 1964). The accuracy was estimated to be ± 0.03 kPa.

Analysis. Vapor and liquid samples were analyzed with a Simazu gas chromatograph type GC-8AIT equipped with

a thermal conductivity cell. Porapak QS was used as the column packing and helium as the carrier gas. The compositions were determined by the relative area method with an accuracy of ± 0.001 mole fraction.

Materials. Methanol and ethanol were special grade pure reagents (Wako Pure Chemical Industry, Ltd.) and were used after removing traces of water with 3A molecular

Figure 3. Activity coefficient-liquid composition diagram for methanol (1) + water (2) at 323.15 K: (■) this work; (□) Dulitskaya (1945); (△) McGlashan and Williamson (1976); (−) NRTL equation.

Figure 4. Activity coefficient-liquid composition diagram for methanol (1) + water (2) at 328.15 K: (\blacktriangle) this work; (-) NRTL equation.

Table 4. Antoine Constants of the Components^a

component	A	В	С
methanol	7.253 25	1608.512	-31.143
ethanol	$7.242\ 15$	1596.044	-46.655
water	7.115~72	1684.123	-43.568

^{*a*} $\log(P/kPa) = A - B/[(T/K) + C].$

sieves. The water was passed through an ion exchanger and distilled. The purity of the materials was checked by gas chromatography and found to be better than 99.9 mol %. In Table 1, some measured properties of the purified reagents are shown with the literature values.

Experimental Results

Binary Systems. The VLE data at 323.15, 328.15, and 333.15 K for the methanol + water and ethanol + water systems are showed in Tables 2 and 3 and Figures 1-8.

Figure 5. Activity coefficient-liquid composition diagram for methanol (1) + water (2) at 333.15 K: (\bullet) this work; (\bigcirc) Broul et al. (1969); (-) NRTL equation.

Figure 6. Activity coefficient-liquid composition diagram for ethanol (1) + water (2) at 323.15 K: (\blacksquare) this work; (\bigcirc) Jones et al. (1943); (\Box) Dulitskaya (1945); (\diamondsuit) Nikol'skaya (1946); (\triangle) Udovenko and Fatkulina (1952); (\bigtriangledown) Dutta Choudhury (1976); (-) NRTL equation.

Table 5. Azeotropic Composition $x_{1(az)}$ in Mole Fraction and Pressure $P_{(az)}$ for Ethanol (1) + Water (2) at Three Temperatures

T/K	x _{1(az)}	P _{(az} /kPa
323.15	0.932	29.57
328.15	0.920	37.44
333.15	0.910	47.05

The activity coefficients, γ_i , in the tables and figures were evaluated by the following equation:

$$\phi_i P y_i = \gamma_i P_i^{\rm S} \phi_i^{\rm S} \exp[\nu_i^{\rm L} (P - P_i^{\rm S})/RT]$$
(1)

where ϕ_i and $\phi_i^{\rm S}$ are the fugacity coefficients of component i in the mixture and the pure vapor, respectively. They were calculated using the second virial coefficients obtained by the Tsonopoulos method (Tsonopoulos, 1974). The liquid molar volumes $v_i^{\rm L}$ were calculated by the modified Rackett

Table 6. Isothermal Vapor–Liquid Equilibrium Data, Vapor Pressure, P, Liquid Phase, x_i , and Vapor Phase, y_i , Mole fractions, and Activity Coefficients, γ_i , for Methanol (1) + Ethanol (2) + Water (3)

<i>P/</i> kPa	<i>x</i> ₁	x_2	<i>y</i> 1	y2	γ1	γ2	γз	P/kPa	x_1	<i>x</i> ₂	y1	y_2	γ1	γ 2	γз
							323.	15 K							
20.921	0.0140	0.0821	0.0649	0.4107	1.7759	3.5746	0.9807	30.987	0.1724	0.3455	0.2999	0.4280	0.9818	1.3014	1.4128
27.718	0.0390	0.3902	0.0774	0.5773	1.0036	1.3934	1.3546	33.564	0.1735	0.7274	0.2713	0.6483	0.9545	1.0116	2.2053
28.902	0.0392	0.5385	0.0705	0.6406	0.9476	1.1670	1.5981	30.513	0.1835	0.2343	0.3545	0.3497	1.0740	1.5447	1.2520
30.148	0.0502	0.6936	0.0848	0.7110	0.9278	1.0478	1.9438	32.966	0.1855	0.5583	0.2863	0.5355	0.9256	1.0701	1.8542
30.717	0.0579	0.7880	0.0956	0.7712	0.9237	1.0179	2.1583	33.380	0.1862	0.6220	0.2882	0.5669	0.9397	1.0292	2.0401
22.176	0.0753	0.0480	0.2984	0.2161	1.0082	3.4074	0.9920	33.602	0.2123	0.0383	0.3224	0.5072	0.9281	1.0710	1.8564
21.000	0.0097	0.2404	0.1902	0.4407	1.1010	1 /017	1.1910	30.010	0.2492	0.0019	0.0777	0.1209	1.2920	2.1200	1.0097
20,447	0.0507	0.3111	0.1805	0.4003	0.0425	1.4917	1 /086	33 539	0.2001	0.0047	0.4107	0.4700	1 0997	1 3 9 9 1	1.3011
24 676	0.1040	0.0617	0.3591	0.2145	1 4603	2 9226	1.4300	37 666	0.2010	0.6447	0.4012	0.2030	0 9899	0 9952	2 2694
32 175	0.1126	0.8125	0.1832	0.7492	0.9527	1 0042	2 3531	36 509	0.3959	0.1881	0.5886	0.2002	0.9860	1.3127	1 4965
30.949	0.1133	0.5766	0.1853	0.5962	0.9218	1.0846	1 7632	38.298	0.4222	0.3218	0.5865	0.2759	0.9654	1 1075	1 6635
31,591	0.1198	0.6711	0.1922	0.6464	0.9226	1.0306	1.9730	42.562	0.5342	0.3998	0.6776	0.2851	0.9776	1.0205	1.9463
30.457	0.1637	0.2995	0.3012	0.4091	1.0210	1.4110	1.3277	44.984	0.6649	0.1583	0.8100	0.1127	0.9913	1.0754	1.5891
33.197	0.1700	0.6708	0.2642	0.6109	0.9384	1.0228	2.1078								
							328.	15 K							
23.344	0.0411	0.0221	0.2197	0.1469	1.8522	4.2003	0.9993	41.574	0.2662	0.2629	0.4370	0.3159	1.0040	1.3356	1.3803
37.529	0.0488	0.6165	0.0826	0.6707	0.9360	1.0938	1.7524	38.264	0.2758	0.0261	0.6285	0.0576	1.2850	2.2636	1.0879
34.300	0.0528	0.2876	0.1129	0.5196	1.0826	1.6644	1.2094	44.882	0.2774	0.5955	0.3985	0.5108	0.9469	1.0265	2.0313
33.662	0.0548	0.2409	0.1261	0.4896	1.1437	1.8384	1.1623	40.927	0.2874	0.1285	0.5354	0.1965	1.1220	1.6743	1.1881
35.015	0.0556	0.3401	0.1100	0.5377	1.0222	1.4861	1.2919	44.421	0.2954	0.4529	0.4292	0.4138	0.9481	1.0828	1.7550
24.334	0.0564	0.0211	0.2740	0.1302	1.7539	4.0618	0.9950	46.707	0.3363	0.5429	0.4720	0.4474	0.9620	1.0252	1.9762
38.921	0.0601	0.7876	0.0996	0.7678	0.9498	1.0152	2.1502	46.124	0.3508	0.4160	0.4956	0.3660	0.9565	1.0815	1.7338
24.944	0.0657	0.0190	0.3080	0.1124	1.7344	3.9902	0.9999	43.472	0.3610	0.1177	0.6104	0.1551	1.0805	1.5301	1.2368
36.609	0.1068	0.3221	0.2037	0.4725	1.0295	1.4402	1.3135	44.330	0.3791	0.1123	0.6321	0.1427	1.0861	1.5038	1.2414
40.194	0.1070	0.7474	0.1719	0.7068	0.9503	1.0162	2.1246	48.174	0.3856	0.4997	0.5276	0.3989	0.9667	1.0234	1.9573
39.340	0.1168	0.5707	0.1867	0.5884	0.9258	1.0854	1.7934	46.406	0.3977	0.2670	0.5712	0.2554	0.9783	1.1831	1.5188
38.130	0.1561	0.3031	0.2810	0.4174	1.0114	1.4069	1.3456	47.786	0.4067	0.3810	0.5538	0.3220	0.9545	1.0752	1.7706
41.571	0.1569	0.7036	0.2444	0.6447	0.9524	1.0176	2.0966	49.840	0.4461	0.4387	0.5879	0.3425	0.9626	1.0345	1.9088
41.080	0.1800	0.5276	0.2792	0.5268	0.9374	1.0965	1.7266	49.126	0.4464	0.3535	0.5989	0.2903	0.9662	1.0732	1.7229
39.590	0.2031	0.2859	0.3534	0.3723	1.0143	1.3800	1.3447	47.014	0.4531	0.1100	0.6838	0.1209	1.0413	1.3771	1.3290
43.320 20 505	0.2100	0.0000	0.3274	0.0700	1 1 405	1.0102	2.0900	50.410	0.4801	0.3283	0.0300	0.2611	0.9706	1.0007	1.7219
30.000 49.714	0.2200	0.1430	0.4474	0.2400	0.0430	1.7914	1.1000	56 400	0.4072	0.3010	0.0007	0.2917	0.9710	1.0074	1.5490
30 773	0.2070	0.4912	0.3307	0.4072	1 1 2 8 1	1 7360	1.1045	50.400	0.0011	0.1110	0.8321	0.0620	0.9974	1.1040	1.0107
38 320	0.2638	0.10433	0.5957	0.0925	1.1001 1.2751	2 1942	1 0904	00.040	0.1031	0.1000	0.0110	0.0711	0.5500	1.0002	1.0919
00.020	0.2000	0.0100	0.0001	0.0010	1.2101	2.1012	333.	15 K							
31.483	0.0342	0.0436	0.1604	0.2539	1.7848	3.9516	1.0001	50.450	0.1996	0.3759	0.3180	0.4305	0.9634	1.2307	1.4946
45.826	0.0428	0.5176	0.0734	0.6304	0.9437	1.1918	1.5447	49.758	0.2025	0.3110	0.3397	0.3892	1.0008	1.3271	1.3861
46.735	0.0477	0.5830	0.0793	0.6587	0.9325	1.1268	1.6593	52.421	0.2842	0.2394	0.4642	0.2913	1.0255	1.3575	1.3446
41.075	0.0512	0.2024	0.1234	0.4703	1.1914	2.0447	1.1178	58.782	0.3434	0.5724	0.4790	0.4627	0.9793	1.0069	2.0404
33.965	0.0535	0.0485	0.2254	0.2437	1.7277	3.6729	1.0041	57.624	0.3831	0.3091	0.5428	0.2904	0.9757	1.1485	1.5615
47.991	0.0546	0.6869	0.0877	0.7068	0.9246	1.0527	1.9108	57.020	0.3929	0.2338	0.5707	0.2370	0.9901	1.2269	1.4681
48.542	0.0583	0.7452	0.0938	0.7413	0.9366	1.0290	2.0416	55.733	0.4013	0.0937	0.6574	0.1197	1.0921	1.5128	1.2288
49.034	0.0630	0.8082	0.1031	0.7822	0.9621	1.0108	2.1904	61.204	0.4112	0.5073	0.5516	0.3951	0.9797	1.0088	2.0060
41.933	0.0710	0.1914	0.1728	0.4382	1.2278	2.0556	1.1056	59.751	0.4226	0.3367	0.5759	0.2908	0.9722	1.0934	1.6553
35.893	0.0734	0.0539	0.2714	0.2395	1.6010	3.4282	1.0058	58.663	0.4592	0.1065	0.6914	0.1179	1.0553	1.3776	1.2869
37.595	0.0938	0.0597	0.3091	0.2304	1.4933	3.1156	1.0224	63.960	0.4876	0.4325	0.6293	0.3230	0.9839	1.0094	1.9130
45.871	0.0976	0.3552	0.1773	0.5011	1.0007	1.3822	1.3479	65.489	0.5288	0.3923	0.6687	0.2860	0.9866	1.0082	1.8834
43.204	0.1029	0.1835	0.2350	0.3903	1.1864	1.9663	1.1339	61.681	0.5382	0.0530	0.7747	0.0556	1.0595	1.3704	1.2789
39.641	0.1130	0.0645	0.3522	0.2226	1.4880	2.9342	1.0243	67.166	0.5740	0.3476	0.7105	0.2470	0.9898	1.0070	1.8234
48.175	0.1340	0.4094	0.2259	0.4948	0.9743	1.2418	1.4736	64.401	0.5981	0.0517	0.8042	0.0488	1.0322	1.2854	1.3503
41.369	0.1350	0.0701	0.3866	0.2161	1.4257	2.7323	1.0334	69.374	0.6311	0.2981	0.7579	0.2054	0.9910	1.0073	1.8006
49.236	0.1353	0.4930	0.2176	0.5385	0.9495	1.1461	1.6163	67.856	0.6522	0.1290	0.8004	0.1004	0.9912	1.1143	1.5379
44.910	0.1436	0.1734	0.3130	0.3421	1.1761	1.8940	1.1334	69.793	0.6845	0.1389	0.8183	0.1021	0.9923	1.0812	1.5729
00.022	0.1000	0.0000	0.2007	0.0070	0.9327	1.0090	1.7024	00.993 70.095	0.0097	0.1407	0.0220	0.0997	0.9928	1.0050	1,0007
40.000	0.1690	0.0770	0.4234	0.2011	1.0/20	2.4/00	1 9900	14.900	0.7955	0.1497	0.0011	0.1010	0.9939	1.0302	1 6690
45 052	0.1069	0.0112	0.2094	0.0000	1 3069	2 2565	1.0090	75 470	0.1000	0.1004	0.0700	0.0390	0.9902	0.5505	1.0029
-0.001	J.1001	0.0000		0.000	1.0002	1.10000	1.0000	10.110	5.010-I	0.0100	0.0111	2.2000	1.0007	1.0010	1.0100

equation (Spencer and Adler, 1978; Moon, 1990). The vapor pressures of the pure components, $P_i^{\rm S}$, were calculated from the Antoine equation constants given in Table 4. The Antoine constants were determined from the vapor pressure data of the pure components measured in this work. The average relative deviations between the values calculated by the Antoine equation and the experimental values are less than 0.01% in all cases.

The ethanol + water system forms a maximum pressure azeotrope. The azeotropic points at each temperature were determined from the experimental VLE data by a graphical technique (Hiaki et al., 1986). The azeotropic composition and pressure are shown in Table 5 and are compared with the literature values in Figure 9.

The experimental VLE data were examined by the thermodynamic consistency test (Kojima et al., 1990) which was proposed in our previous paper. The results indicate that the reported data for both systems are thermodynamically consistent.

For the methanol + water and ethanol + water systems at the temperatures investigated in this paper, there are three and seven data sets, respectively, which contain pressure, liquid composition, and vapor composition, available in the literature. However, these data are not

Figure 7. Activity coefficient-liquid composition diagram for ethanol (1) + water (2) at 328.15 K: (\blacktriangle) this work; (\bigtriangledown) Mertl (1972); (-) NRTL equation.

Table 7.	NRTL Parameters and Deviations between	en the
Calculate	d and Experimental Vapor-Phase Mole	
Fractions	Δv_i , and Pressures. ΔP^a	

NRTL parameter	me (wa	thanol 1) + ter (2)	ethar (1) - water	nol + • (2)	methanol (1) + ethanol (2) + water (3)				
$(g_{12} - g_{22})/1$ $(g_{21} - g_{11})/1$ α_{12}	$\begin{array}{ccc} g_{12} - g_{22} / \mathrm{K} & 102.6 \\ g_{21} - g_{11} / \mathrm{K} & 101.5 \\ g_{12} & 0.4 \end{array}$			K 146 113 n	no ternary parameters				
$(g_{12} - g_{22})/1$ $(g_{21} - g_{11})/1$ α_{12}	K 3 K 18	1.2103 9.8366 0.4	328.15 38.63 535.03 0.4	K 321 587 n	no ternary parameters				
$(g_{12} - g_{22})/1$ $(g_{21} - g_{11})/1$ α_{12}	K -3 K 29	6.3387 4.9389 0.4	333.15 42.43 530.80 0.4	K 320 664 n	no ternary parameters				
	Δy_1	$\Delta P / \%$	Δy_1	$\Delta P / \%$	Δy_1	Δy_2	$\Delta P / \%$		
average maximum	0.005 0.009	1.49 2.35	$323.15 \\ 0.002 \\ 0.004$	K 0.17 1.03	0.006 0.026	0.004 0.010	$\begin{array}{c} 0.71 \\ 1.82 \end{array}$		
average maximum	0.004 0.014	1.04 2.03	328.15 0.002 0.007	K 0.16 0.30	0.004 0.016	0.002 0.007	0.64 1.15		
average maximum	0.003 0.009	0.38 0.95	333.15 0.004 0.013	K 0.21 0.92	0.003 0.008	0.003 0.012	0.53 1.52		

^a $\Delta y_i = \sum_k |y_{i,\text{exptl}} - y_{i,\text{calcd}}|_k/N, \Delta P = 100\sum_k (|(P_{\text{exptl}} - P_{\text{calcd}})/P_{\text{exptl}}|_k/N, N = \text{number of data points.}$

consistent with our proposed test. Figures 3-8 show the comparisons of the activity coefficients calculated from all literature VLE data and our results.

Ternary System. Table 6 gives the experimental VLE data for the system methanol + ethanol + water system at 323.15, 328.15, and 333.15 K.

Correlation and Prediction

The activity coefficients of the binary systems were correlated by the NRTL equation (Renon and Prausnitz, 1968) for each equilibrium temperature. The correlation procedure was based on the minimization of the following

Figure 8. Activity coefficient-liquid composition diagram for ethanol (1) + water (2) at 333.15 K: (\bullet) this work; (\triangle) Udovenko and Fatkulina (1952); (-) NRTL equation.

Figure 9. Azeotropic pressure-liquid composition diagram for ethanol (1) + water (2): (\bullet) this work; (\P) Vrevskii (1910); (\diamond) Wade and Merriman (1911); (\Box) Jones et al. (1943); (\blacktriangle) Udovenko and Fatkulna (1952); (\bullet) Wilson et al. (1979); (\odot) Baláczar-Ortiz (1979); (\blacksquare) Dutta Choudhury (1976); (\circlearrowright) Tochigi et al. (1985); (\vartriangle) Zielkiewicz and Konitz (1991); (\bigtriangledown) Kurihara et al. (1993).

objective function:

$$F = \sum_{k=1}^{N} \left[\left(\frac{\gamma_{1,\text{calcd}} - \gamma_{1,\text{exptl}}}{\gamma_{1,\text{exptl}}} \right)_{k}^{2} + \left(\frac{\gamma_{2,\text{calcd}} - \gamma_{2,\text{exptl}}}{\gamma_{2,\text{exptl}}} \right)_{k}^{2} \right]$$
(2)

where N is the number of data points. The mixture nonrandomness parameter α_{12} was set as 0.4 as recommended by Walas (Walas, 1984). Table 7 lists the estimated parameters of the binary systems and the deviations between the calculated and experimental vapor-phase compositions and total pressures. The calculated results are shown by the solid lines in Figures 1-8.

The VLE for the ternary methanol + ethanol + water system was predicted with the binary NRTL parameters listed in Table 7. In the prediction, the parameters τ_{12} , τ_{21} , and α_{12} for the methanol + ethanol system were equated to 0 at the calculated pressure range, because the values γ_1 and γ_2 are close to 1 (Kurihara et al., 1993) which indicates that this system is nearly an ideal solution. The agreement between the predicted and experimental values was good.

Literature Cited

- Balcázer-Oritz, A. M.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. Excess Thermodynamic Functions for Ternary Systems. 5. Total-Pressure Data and G^E for 1,4-Dioxane-Ethanol-Water at 50 °C. J. Chem. Eng. Data 1979, 24, 133–136. Bridgeman, O. C.; Aldrich, E. W. Vapor Pressure Tables for Water. J.
- Heat Transfer 1964, 86, 279-286.
- Broul, M.; Hlavaty, K.; Linek, J. Liquid-Vapor Equilibriums in Systems of Electrolytic Components. V. Collect. Czech. Chem. Commun. 1969, 34, 3428-3435.
- Dutta Choudhury, M. K. Excess Free Energy of Binary Mixtures of n-Butylamine with Ethyl alcohol & n-Propyl alcohol. Indian J. Chem. 1976, 14A, 553-556.
- Dulitskaya, K. A. Vapor Pressure of Binary Systems. J. Gen. Chem. USSR (Éngl. Transl.) 1945, 15, 9-21.
- Kojima, K.; Moon, H. M.; Ochi, K. Thermodynamic Consistency Test of Vapor-Liquid Equilibrium Data -Methanol~Water, Benzene~ Cyclohexane, Ethyl methyl ketone~Water. Fluid Phase Equilib. 1990, 56, 269-284.
- Kurihara, K.; Nakamichi, M.; Kojima, K. Isobaric Vapor-Liquid Equilibria for Methanol + Ethanol + Water and the Three Con-
- stituent Binary Systems. J. Chem. Eng. Data **1993**, 38, 446–449. Hall, D. J.; Mash, C. J.; Pemberton, R. C. NPL Rep. Chem. (U.K., Natl.
- Phys. Lab., Div. Chem. Stand.) 1979, 95, 32.
 Hiaki, T.; Tochigi, K.; Kojima, K. Measurement of Vapor-Liquid Equilibria and Determination of Azeotropic Point. Fluid Phase Equilib. 1986, 26, 83-102.
- Hiaki, T.; Yamato, K.; Kojima, K. Vapor-Liquid Equilibria of 2,3-Dimethylbutane + Methanol or Ethanol at 101.3 kPa. J. Chem.
- Binethylottane + Methanol or Ethanol at 101.3 KPa. 5. Chem.
 Eng. Data 1992, 37, 203-206.
 Hiaki, T.; Takahashi, K.; Tsuji, T.; Hongo, M.; Kojima, K. Vapor-Liquid Equilibria of Ethanol + 2,2,4-Trimethylpentane at 333.15 K and 1-Propanol + 2,2,4-Trimethylpentane at 343.15 K. J. Chem. Eng. Data 1994, 39, 605-607.
- Jones, C. A.; Schoenborn, E. M.; Colburn, A. P. Equilibrium Still for miscible mixtures -Data on Ethylenedichloride-Toluene and Ethanol-Water. Ind. Eng. Chem. 1943, 35, 666-672.

- McGlashan, M. L.; Williamson, A. G. Isothermal Liquid–Vapor Equilibria for System Methanol + Water. J. Chem. Eng. Data 1976, 21, 196–199.
- Mertl, I. Liquid-Vapor Equilibrium. II. Phase Equilibriums in the ternary system Ethyl acetate-Ethanol-Water. Collect. Czech. Chem. Commun. 1972, 37, 366-374.
- Moon, H. M. Ph.D. Dissertation, Nihon University, 1990. Nikol'skaya, A. V. The Vapor Pressure of Ternary Stratified Systems. Aqueous Alcohol Solutions of Potassium carbonate and Magnesium sulfate. Zh. Fiz. Khim. 1946, 20, 421-431. Ratcliff, G. A.; Chao, K. C. Prediction of Thermodynamic Properties of
- Polar Mixtures by a Group Solution Model. Can. J. Chem. Eng. 1969, 47, 148-153.
- Renon, H. and Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135-144
- Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
- Spencer, C. F.; Adler, S. B. A Critical Review of Equations for Predicting Saturated Liquid Density. J. Chem. Eng. Data 1978, 23. 82-89.
- Tochigi, K.; Inoue, H.; Kojima, K. Determination of Azeotropes in Binary Systems at Reduced Pressures. Fluid Phase Equilib. 1985, 22. 343-352.
- Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients.
- AIChE J. 1974, 20, 263-272.
 Udovenko, V. V.; Fatkulina, L. G. The System Ethyl alcohol-1,2-Dichloroethane-Water. Zh. Fiz. Khim. 1952, 26, 1438-1447.
- Vrevskii, M. S. Composition and Vapor Tension of Solutions. J. Russ Phys. Chem. Soc. 1910, 42, 1-35. Wade J.; Merriman, R. W. Influence of Water on the Boiling Point of
- Ethyl Alcohol at Pressures Above and Below the Atmospheric Pressure. J. Chem. Soc. 1911, 99, 997-1011.
- Walas, S. M. Phase Equilibria in Chemical Engineering; Butterworth Publishers: Boston, 1985.
- Wilson, S. R.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. Excess Thermodynamic Functions for Ternary Systems. 4. Total-Pressure Data and GE for Acetonitrile-Ethanol-Water at 50 °C. J. Chem. Eng. Data 1979, 24, 130-132.
- Zielkiewicz, J.; Konitz, A. Vapor-Liquid Equilibrium in Ternary System N,N-Dimethyl-Formate+Water+Ethanol at 313.15 K. Fluid Phase Equilib. 1991, 63, 129-139.

Received for review December 1, 1994. Accepted January 29, 1995.

JE9402536

* Abstract published in Advance ACS Abstracts, March 1, 1995.